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What is Apache Spark?

Fast and general cluster computing engine to process large-scale data

Key Uses Design & Performance
- SQL analytics . Designed for high-performance, S APACHE K

. Machine learning  heavy data workloads pqr

. Streaming data . Enables high-degree of parallelism
Spark is the most widely-used big data processing platform.




Intended Workload of Spark

Spark is designed and optimized for a query needing
homogeneous operations on large datasets.

Dataset: a collection
of (month, sales)s

8 Partition by year

Q. What are my total sales?
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Unintended Workload of Spark

Queries for small input data continue to grow
in the workload of big data platforms.

& What are my total sales for the last three months?

needs
Query

Characteristics: Light computation & A massive number
Observed in Youtube [1], Alibaba Cloud [2], ...

[1] Biswapesh Chattopadhyay, et al. “Procella: Unifying Serving and Analytical Data at YouTube.” (VLDB’19)
[2] Rui Han, et al. “Adaptiveconfig: Run-time configuration of cluster schedulers for cloud short-running jobs.” (ICDCS’18)



Primary Sources of Queries for Small Data

Dashboarding queries for statistics of recent data by Amazon sellers
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High-level libraries such as Pig and Hive
= High-level user queries — a large number of small Spark queries



Our Definition of Small Query

* We define a small query as the query whose input data can fit into a single
partition specified in the Spark configuration.
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Key Concept in Spark: RDD

* RDD (Resilient Distributed Dataset):
an immutable distributed collection of

elements of data
= Resilient: if data is lost, it can be recreated
= Distributed: stored across the cluster
= Dataset: collection of data records

* Partition: an atomic piece of the dataset
stored in a node

 Task: an execution unit created by Spark
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Key Concept in Spark: Transformations

* Narrow transformations apply an operation to a single partition.

= map, filter, flatMap, sample, ...

* Wide transformations require data to be shuffled or moved across

multiple partitions.

= join, groupByKey, reduceByKey, ...

Narrow transformation (e.g., map)

— e o o T EE EE EE EE D EE EE O EE Em o Em oy,

Wide transformation (e.g., reduceByKey)
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Setup Cost of Spark

e The total execution time = setup time + compute time

e The setup time includes
= : waiting time to determine the order of tasks
= Task (de)serialization time: time to (de)serialize tasks to send tasks over the network
= Application launch overhead: startup of executor JVMs, resource allocation
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Compute Cost of Spark

e The total execution time = setup time + compute time

e The compute time includes
= Executor computing time
= shuffle read/write time

Worker Time to transform data
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Problems with Running Small Queries in Spark

Problem 1. Too large setup time compared to actual computation time
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Problem 2. Insufficient degree of parallelism
Too few number of partitions =—> low parallelism 11



Key Idea in Our Solution: Query Merging

Query Merging: a massive number of small queries —» a big query
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A big query with Q1-Q5 merged together

12



Key Idea in Our Solution: Query Merging

Query Merging: a massive number of small queries —» a big query
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Golving Problem 1. Improvement of setup-to-compute time ratio
* Individual setup time per query is eliminated

Solving Problem 2. Higher parallelism
\’ Large merged data leads to many partitions
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Key Idea in Our Solution: Query Processing of Task 1
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Key Idea in Our Solution: Query Processing of Task 2
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Key Idea in Our Solution: Query Processing of Task 3

Products & Ratings
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Query Embedding

How to recognize records for different queries in an RDD?

* We need to identify which query each record is associated with in an RDD.

 Embedding of the query information (i.e., query ID Q) into data (i.e., records)
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Details in Our Paper

* APIs for small query processing
= Supporting the same transformation methods as RDD

» Detailed RDD transformations for merged operations
* Including wide-dependency operations (e.g., join, reduceByKey)

« Adaptive partitioner (microPart)
= Optimizing the partitions for small queries to reduce network overheads
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Experimental Setup

* Cluster setup

= One master and four worker machines
= Each executor used 14 cores and 128 GB RAM to run Spark applications.

 Compared techniques

= SparksS: the standard way of using Spark where all queries are submitted and processed
individually and independently
= SparkU: combining small queries in a given workload with a UNION operator

 Two real-world datasets
= BRA: A dataset with 100K records of orders collected between 2016 and 2018 on a Brazilian
online marketplace
= eBay: Transactions for auction details on eBay

- Query workloads obtained from the interface of amazon seller central

19



Evaluation — Number of Queries on Performance
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* Clear trends of the widening performance gap between QaaD and the other two
compared techniques as the query size scales up

* 10.6 X and 21.6 X speed-ups against Sparks for BRA and eBay datasets at the highest
workload

20



Evaluation — Arrival Rate on Performance
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* The response time of QaaD improves quickly as the arrival rate increases.
* QaaD outperformed SparkS by 2.8 X and 6.4 X at the arrival rate of 1000

queries/sec for BRA and eBay datasets.
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Conclusion

* A significant performance improvement of the Spark on workloads made of
a large number of small queries

* ‘Transform the workload’ to conform to what Spark was designed for to
utilize its strong point - distributed parallel processing on a large-sized
dataset

* Verification of an order of magnitude improved performance on small query
workloads through comprehensive evaluations

22



